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Abstract

First, this paper presents the concept of mixed-phase simulation with fracture-path prediction mode which uses a
postulated propagation-direction criterion together with experimentally obtained crack propagation history. Fur-
thermore, this paper presents the development of an automatic moving finite element method that incorporates the
Delaunay automatic triangulation. Using the automatic moving finite element method, the mixed-phase simulation
with fracture-path prediction mode is carried out for mixed-mode impact fracture tests. Various dynamic fracture
mechanics parameters are evaluated by the path-independent dynamic J integral. The moving finite element method in
conjunction with the local symmetry (Ky = 0) criterion successfully predicts the numerical fracture path in excellent
agreement with experimentally obtained actual fracture path. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Numerical prediction of dynamic fracture path is an extremely important research subject not only for
academic interest (Nishioka, 1994, 1997) but also for the establishment of a safety design methodology that
prevents catastrophic overall failures of structures. However, numerical fracture-path predictions of non-
self-similar dynamic fracture phenomena have not been succeeded until recently, due to various inherent
difficulties.

To establish the numerical methodology for dynamic fracture path prediction, first, Nishioka et al.
(1990b) have developed a moving finite element method based on a mapping technique. Using this moving
finite element method, they have carried out the generation-phase simulation of fast curving fracture in
double cantilever beam (DCB) specimens (Nishioka et al., 1990a). Next, Nishioka (1997) has proposed the
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concept of “mixed-phase simulation” together with “fracture-path prediction mode” and “‘crack-growth
prediction mode”. Then, using the moving finite element method based on the mapping technique, the
mixed-phase simulation with the fracture-path prediction mode has been carried out (Nishioka et al., 1996,
1997) for dynamically curving crack propagation in the DCB specimens. The moving finite element sim-
ulation has succeeded to predict the experimentally obtained actual fracture paths.

However, the dynamic fracture paths in the DCB specimens under static loading were rather smooth.
The moving finite element method based on the mapping technique may be somewhat difficult to apply to
the problems of dynamic crack kinking and dynamic crack branching.

In this study, to establish a simulation method for complex crack propagation, a moving finite element
method based on Delaunay automatic triangulation (Sloan and Houlsby, 1984; Taniguchi, 1992) is de-
veloped. Furthermore, the present moving finite element method is combined with the concept of the
mixed-phase simulation with fracture-path prediction mode. The moving finite element method based on
Delaunay automatic triangulation successfully demonstrates the prediction of dynamic fracture paths in
mixed-mode impact fracture experiments.

2. Mixed-mode impact fracture experiments

The geometry of a three-point bend specimen for mixed-mode impact fracture test is shown in Fig. 1.
The dimensions of the specimen are as follows; length L = 430 mm, width /' = 100 mm, span S = 400 mm,
thickness # = 10 mm, and initial crack length ¢y = 50 mm. Polymethyl methacrylate (PMMA) was used in
the present experiment. The material properties are Young’s modulus £ = 2.94 GPa, Poisson’s ratio
v = 0.3, mass density p = 1190 kg/m>. The longitudinal (dilatational) and shear wave velocities in this
material are Cq4 = 1710 m/s and C; = 941 m/s, respectively.

The initial crack consists of a machine notch of 35 mm and a fatigue crack of 15 mm. The impact load by
a dropping rod (5.05 kg) was applied at the off-center point as shown in Fig. 1. The initial impact velocity of
the hammer was set as 5 m/s. The loading eccentricity is defined as e = 1/(S/2). To induce various mag-
nitudes of mixed-mode state in the specimen, the loading eccentricity was systematically changed.

Fig. 2 shows a photograph of the specimens fractured by the impact loading with e = 0.0, 0.1, 0.2, 0.3,
0.4 and 0.5. The kinked angle from the initial crack tip systematically increases with increasing loading
eccentricity. The dynamic fracture paths are fairly smooth, and propagate toward the corresponding
loading points.

[ S i

Fig. 1. Three-point bend specimen for impact fracture.
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Fig. 2. Fractured specimens.

High-speed photographs of dynamic fracture events were taken by using a laser caustic method and a
high-speed camera. The high-speed photographs of dynamically fracturing specimen under the loading
eccentricity of e = 0.0 are shown in Fig. 3. The time intervals of the photographs are about 30 ps. After the

(13 (14) (15) (16)

Fig. 3. High-speed photographs of dynamically fracturing specimen (e = 0.0).
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impact loading was applied, the caustic patterns of the mode I (crack opening mode) around the crack tip
became larger until the time of the photograph (7). At the time of the photograph (8), the crack had already
propagated for a short distance. Then, it is seen in the photograph (16) that the specimen almost completely
broke into two parts.

Fig. 4 shows the high-speed photographs of the dynamically fracturing specimen under the loading
eccentricity of e = 0.1. In the photographs (4)-(6), the caustic patterns of the mode II (in-plane shearing
mode) dominated type can be seen. At the time of the photograph (7), the crack had already propagated for
a short distance. The caustic pattern in the photograph (7) suddenly changed to mode I dominated type.
The specimen almost completely broke into two parts at the time of the photograph (15). Around the initial
crack tip, a caustic pattern due to a bending moment can be seen in the right-hand side of specimen in the
photographs (15) and (16).

For both specimens, the caustic patterns due to the impact loading are always seen under the impact rod,
except in the first photographs. This implies that the specimens were always pushed after the impact
loading. Thus the loading rod was in contact with the specimen throughout the fracture test.

Crack propagation histories measured by the caustics in the high-speed photographs are shown in Figs. 5
and 6. Dynamic fracture occurred at = 156 ps in the specimen of e = 0.0, and at = 120 ps in the specimen
of e = 0.1, respectively. The maximum crack velocity observed was about 250 m/s in the specimen of
e = 0.0, and about 300 m/s in the specimen of e = 0.1, respectively.

A
(14)

(13) (15) (16)

Fig. 4. High-speed photographs of dynamically fracturing specimen (e = 0.1).
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Fig. 6. Crack propagation history (e = 0.1).

On the basis of a theory of mixed-mode dynamic caustics (Nishioka and Kittaka, 1990), the charac-
teristic dimensions of the caustic patterns were converted to dynamic stress intensity factors (see Figs. 25
and 26).

3. Types of simulation for fracture phenomena

For non-self-similar fracture such as curving crack growth, three types of numerical simulation have
been proposed by Nishioka (1997), as explained in Fig. 7. Here, we consider a dynamic curving fracture
problem as an example. In Fig. 7, symbols a, C(= a), J' and ¢ denote the crack length, crack velocity,
dynamic J integral, and time, respectively. The curve in the global coordinate system (X7, X;) represents the
curved fracture path.

Suppose that the specimen is modeled by a numerical analysis method such as the finite element method.
To this end, all dimensions of the specimen should be prescribed. In addition the material behavior and the
initial and boundary conditions should be known.
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Fig. 7. Types of fracture simulations (dynamic curving fracture).

In the generation phase simulation, the fracture test is reproduced in the computer model using the
experimentally measured crack propagation history (a versus ¢ or C versus ¢) and the curved fracture-path
history (see Fig. 7(i)). The generation phase simulation was originally proposed by Kanninen (1978) for
self-similar (linearly propagating) fracture problems. In this simulation, fracture parameters such as the
dynamic J integral and the dynamic stress intensity factors can be evaluated during dynamic fracture
processes. From this calculation, one can determine the fracture toughness as the material resistance against
the fracture initiation, crack propagation and crack arrest (if any). Then, one may postulate various
fracture criteria based on the information obtained by the generation phase simulation.

On the other hand, in the application phase simulation for curving crack growth, two criteria must be
postulated or predetermined as shown in Fig. 7(ii). One is a crack propagation criterion that determines the
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crack increment or the crack velocity at each time step. Other one is a criterion for predicting the direction
of crack propagation (propagation-direction criterion or growth-direction criterion). In this simulation, the
crack propagation history (a versus ¢ or C versus #) and the fracture-path history are used to produce a
virtual reality fracture in the computational model. The application phase simulation is also sometimes
called “prediction” or “inverse’ simulation.

However, the application phase simulations of curving crack growth have not been fully established, due
to several critical difficulties in those simulations. For instance, in dynamic brittle fracture, the crack
propagation criterion described by fracture-toughness versus crack-velocity relation itself has several un-
solved problems. The stress intensity factor during dynamic crack propagation depends on not only the
crack velocity but also the crack acceleration (Takahashi and Arakawa, 1987). Furthermore, the crack
propagation criteria may also be influenced by the geometry of fracture specimen.

To verify only the propagation-direction criterion such as the maximum energy release rate criterion,
Nishioka (1997) has proposed “mixed-phase simulation” as depicted in Fig. 7(iii-a). Regarding the crack
propagation history, the same experimental data for the a—¢ relation used in the generation phase simu-
lation are used. Thus, the increment of crack propagation is prescribed for the given time increment in the
numerical simulation. Then the propagation-direction criterion predicts the direction of fracture path at
each time step. Simulated final fracture path will be compared with the actual one obtained by the ex-
periment. This mode of the mixed-phase simulation is called as “fracture-path prediction mode” (see Fig.
7(iii-a)).

Another mode of the mixed-phase simulation can be considered as depicted in Fig. 7(iii-b), i.e., “crack-
growth prediction mode”. In this mode, the experimental data for the fracture-path history and a crack-
propagation criterion are used simultaneously. In this case, the crack is forced to propagate along the actual
fracture path during the numerical simulation. Simulated crack propagation history should agree with the
experimentally obtained actual one if the postulated crack propagation criterion is valid.

As explained above, using the mixed-phase simulation, the crack propagation criterion and the prop-
agation-direction criterion can be verified separately. The concept of mixed-phase simulation can also be
applied to curving fatigue crack growth and curving stable crack growth.

4. Moving finite element method based on Delaunay automatic mesh generation

In a dynamic crack propagation problem, the crack surfaces that are usually free surfaces extend with a
high-velocity, and the stresses and strains at the crack tip or at the crack front become unbounded.
Consequently, one must solve a moving singular-point boundary-value problem. The high-velocity moving
singular point usually induces various numerical errors in the computational model. Therefore, a highly
accurate numerical analysis method is mandatory to solve the dynamic crack propagation problem.

To simulate the crack propagation by the finite element method, two different concepts of computational
modeling can be considered, i.e. (i) the stationary element procedure (or fixed element procedure), and (ii)
the moving element procedure, as reviewed by Nishioka and Atluri (1986), and Nishioka (1994, 1997). For
self-similar dynamic crack propagation problems, it is well known that the numerical results of the moving
element procedure are generally more accurate than those of the fixed element procedure. However, the
moving element procedure was difficult to apply to non-self-similar dynamic crack propagation problems
except for smoothly curving fracture problems (Nishioka et al., 1996, 1997), because of the difficulties in
moving the near-tip elements along curved or kinked path.

In order to overcome the aforementioned difficulties, a moving finite element method based on Delaunay
automatic mesh generation is developed in this study. A crack growth procedure combining automatic
mesh generation was also developed by Camacho and Ortiz (1996). However, their method falls into the
category of the fixed element procedure.
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4.1. Modified Delaunay automatic triangulation

Delaunay triangulation (Sloan and Houlsby, 1984) automatically generates triangles that cover the
whole area within an arbitrarily specified convex region. All generated triangular elements do not contain
any other nodes within their circumscribed circles. This feature is also preferable to the triangular finite
elements from an accuracy point of view.

Taniguchi (1992) has developed the modified Delaunay triangulation which can treat a concave region
such a cracked body. He has also developed a program for automatic mesh generation on the basis of the
modified Delaunay triangulation (Taniguchi, 1992). The remeshing procedure in the modified Delaunay
triangulation is shown in Fig. 8. If a flat element has a large interior angle, then the triangular elements
around it are remeshed as shown in Fig. 8. In this procedure, the new nodal point is placed at the mid-point
of the opposite side of the maximum interior angle.

In the modified Delaunay triangulation, only exterior and interior boundary points and specified interior
points (if they are necessary) are required for automatic mesh generation. Fig. 9 shows an example of mesh
generation for a plate with an edge crack. The specified points at the boundaries are shown in Fig. 9(a). To
distinguish the upper and lower crack surfaces, the coordinates of the upper and lower crack surfaces are
shifted by infinitesimally small distances +¢ in the perpendicular direction to the crack surfaces. Thus, the
crack is opened by 2¢. Due to the stress singularity at the crack tip, the specified interior points are placed

Flat element

7‘ -
New point

Fig. 8. Remeshing procedure with the distortion rate.

- e

(a) Exterior boundary points ~ (b) Specified interior points  (c) Generated mesh pattern

Fig. 9. An example of automatic mesh generation.
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around the crack tip as depicted in Fig. 9(b). The mesh pattern in Fig. 9(c) is automatically generated using
the exterior boundary points and the specified interior points.

4.2. Automatic mesh generation for a propagating crack

Nishioka and coworkers have developed various types of moving finite element procedure. These are
reviewed and summarized by Nishioka and Atluri (1986) and Nishioka (1994, 1997). In this study, the
concept of the moving finite element method is extended to complex crack propagation problems using the
modified Delaunay automatic triangulation.

In the moving finite element method based on Delaunay automatic triangulation, a crack is advanced as
shown in Fig. 10. The group of the specified interior points around the propagating crack tip translates in
each time step for which crack growth occurs. In each time step, the previous crack tip point breaks into
two nodal points. In this study, the number of exterior boundary points is increased by two for each time
step during crack propagation. Thus at least four degrees of freedom should be increased in each crack
increment. The crack tip always remains at the center of the group of the moving elements throughout the
analysis even for complicated crack propagation. At each time step, the interior region between the
specified nodes around the crack tip and the specified boundary nodes, is automatically broken into tri-
angular elements by using the modified Delaunay automatic triangulation.

4.3. Time integration method

In this study, the Newmark method is used for the time integration of the finite element equations of
motion. At a generic time step n, the final simultaneous equations to be solved are expressed as

(alm)™ + K" )} = (7Y + M) (a0{ O}, + ax{ O}, +as{ 01, ), (1)

where {0}, {0}, {O} are the global vectors of nodal displacements, nodal velocities and nodal accelera-
tions, respectively. The subscripts n and n — 1 denote the quantities at the present time step n and at the
previous time step n — 1, respectively, while the superscript (n) denotes the quantities in the mesh pattern of
the present time step n. [M], [K], {F} are the mass matrix, the stiffness matrix and the load vector, re-
spectively. The coefficients ay ~ a3 are the parameters in the Newmark method (see Eq. (4)).

After solving Eq. (1) for the nodal displacements at the present time step, the nodal velocities and ac-
celerations can be evaluated by the following equations:

Fig. 10. Moving elements around a propagating crack tip.
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{01 = a ({01 — {0}, ) — ax{ O, — as{ O}, 2)
{01 = {03 + as{ O}, + {0}, (3)
The coefficients are given as
R B 1 1 o Al
O g T BA P T A, P TpT 0 T BT (ﬁ_ )
ag = At,(1 = 96), a7 = 96At, (4)

where At, is the time increment at the present time step. In this study, the Newmark’s parameters are chosen
to be f=1/4 and 6 = 1/2 to fulfill the unconditionally stable condition (Bathe and Wilson, 1976).

4.4. Mapping of solution fields in the previous mesh onto those in the present mesh

As explained in the previous subsections, in the moving finite element method, the moving-mesh and
remeshing procedures are used (see Fig. 10). To use the Newmark time integration scheme for the moving
finite element method, the previous solution fields for the current mesh pattern are needed, i.e., {Q}ff’f 1
{Q}i’i)l, {Q}ff')l (see the right-hand side of Eq. (1)). This means that the mapping of the solution fields in the
previous mesh onto those in the present mesh is needed.

In this subsection, the detailed procedures for constructing {Q;,»,(:i)l, {0}, {0}, from the previous
solution fields in the previous mesh {Q}f,":ll), {Q}fl”:ll) and {Q}fln:ll are given. For the mapping of the so-

lution fields in the previous mesh onto those in the present mesh, we have developed the following two
procedures.

4.4.1. Searching an element in the previous mesh for a new nodal point

Let us consider a newly created nodal point in the present mesh as the pth node. The program searches
the element in the previous mesh in which the new pth node is included, as shown in Fig. 11. The triangles
Ay, Ay and A5 are calculated by the following determinants:

y

) Ae=A1+A2+A3
0 X

Fig. 11. A new nodal point in the previous mesh.
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where x, and y, are the coordinates of the point p, and x; and y; (i = 1,2, 3) are the coordinates of the nodes
1, 2 and 3.

It can easily be judged whether the pth node is inside of the element or not. If 4, A, and A4; are all
positive, the pth node is inside of the element, while it is outside if any of A4, 4, or 43 is negative.

4.4.2. Creating nodal quantities for the new nodal point
Once the old element including the new pth node is found, the area coordinates of the pth node can be
calculated by

élp :AI/A67 éZp :AZ/A57 531) :A3/Ae7 (6)
where A, is the area of the element. Since in this paper we use linear triangle elements, the shape functions
N; of the point p are given by

]vizéip (l: 17273) (7)

Using these shape functions, the nodal displacements, nodal velocities and nodal accelerations in the x
and y directions can be constructed for the new pth node as follows:

3

(up)s,ri)l = ZM('!*I) (51177 éZ[ﬂ 63[7) (ul),(,n,]U (P = 17 27 LR 7N)7 (83)
i=1
2 1 1

(UP)S?] = Z]Vi(n7 )(élp7 é2p7 éfﬁp) (Uz>£,n,_1 ) (P = 1> 27 e aN)7 (8b)
i=1
2 1 1

() = NV (&, 8y &) @) (p=1,2,...,N), (9a)
i=1
2 1 1

(Up)ir?l = Z]vi(”7 )(flpv pra 531)) (Ul);(1n—71 ) (.p = 17 27 cee aN)7 (9b)
i=1
: 1 1

(u[i)ir:)l = ZNi(n7 )(51p752p7§3p)(ui),(1n,71 ) (P: 1727"'7N)7 (loa)

(bp),(;?l = Zjvi(nil) (flpa 6217’ 6317) (vl)flri]l) (.p = 17 27 s aN)v (1Ob)

i=1
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where N denotes the total number of new nodes created in the remeshed zone including the moving element
zone.

5. Contact and non-contact boundary conditions for loading and support points

Since in general the impact rod and the supports in the three-point bend test can “push’ the specimen
but not “pull” (see Fig. 1), the fixed boundary conditions at the loading point and at the supports in the
numerical analysis may lead to a spurious deformation behavior of the specimen. Thus, account should be
taken of the possibility of lack of contact of the specimen with each of the impact rod, the left, or right
support at various instants of time. For this kind of problem, Nishioka and coworkers were the first
to introduce the contact/non-contact boundary conditions to three-point bend specimens (Nishioka and
Atluri, 1983), and to DCB specimens (Nishioka and Atluri, 1982). From the numerical results for the three-
point bend fracture test (Nishioka et al., 1983), it was found that the specimen was periodically not in
contact with either the impact rod or the supports; i.e. the specimen periodically became a free-flying object.

In the present study, the contact/non-contact boundary conditions are also employed in the numerical
simulations. The contact/non-contact boundary conditions are incorporated in the program as follows.

We designate the nodal forces at the impact loading point, the left and right supports as Fy, (¢ = h,1,r)
(the global X direction is taken in parallel with the initial crack direction), and the corresponding dis-
placement components at those points as u, (o« = 4, /,r). Then, those nodal forces and displacements in the
next time step (n + 1) are predicted by

((Fxa), = (Fxa), 1)
At,

(FXa),,_H = (an),,—F Atn+l (O(:]’l, l,l’) (11)

and
(u“)n+l = (ud)n + (u“)nAtn+1 (OC = h? 17 r)' (12)
The initial conditions at those points are given by

(uz)g = (U), (i), :(ﬁa)ov (it2) :(ﬁa)o (x=h,1r), (13)

where the upper bars denote prescribed values. In this study, since the mass of the specimen is fairly small
(0.512 kg) compared with that of the rod (5.05 kg), and since the duration of the impact load is very short,
the velocity of the rod is assumed to be constant i.e., (%),= 5 m/s throughout the analysis. Thus, the
displacement and acceleration of the rod are given by (i), =(#), x t and (4),= 0, respectively. The po-
sitions of the supports are fixed throughout the analysis, as (i), =(#g),=(#s),= 0 ( = 1,r).

A negative value of (Fy,),., indicates that the specimen will be pushed by the impact rod, while a positive
value of (Fyg),,, (f = [,r) indicates that the specimen will be pushed by the supports. Thus, the contact
condition at each point continues if the sign of the corresponding predicted nodal force at the next time step
(n+1) (see Eq. (11)) remains unchanged. The non-contact condition at each point occurs if the corre-
sponding value of (Fy,),,, (« = h,1,r) becomes zero or of the different sign.

When the non-contact condition is predicted, that point is set as free at the next time step. The
movement of that point is calculated by the simulation. The free state continues if the sign of the gap
((4y), 1 — (#y),,1) (= h,[,r) remains unchanged from the current time step. Then, re-contact condition
occurs if the gap ((#,),,, — (@),.,) (¢ = h,1,r) is predicted as zero or of the different sign.

Although in (Nishioka et al., 1983) the time increment was subdivided whenever the transition to the
non-contact or re-contact condition was predicted to occur prior to the time of the next step, in this study a
sufficiently small constant time increment is always used throughout the simulation.
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6. Fracture-path prediction procedure

As explained in Section 3, in the mixed-phase fracture-path prediction mode simulation, a propagation-
direction criterion is needed to be postulated. Many criteria have been proposed in literature. Some of these
criteria are listed below:

(1) maximum hoop stress criterion (ogy max) (Erdogan and Sih, 1963),

(i) minimum strain energy density criterion (Smin) (Sih, 1972),

(ii1) maximum second stress invariant criterion (/; max) (Papadopoulos, 1988),

(iv) maximum stress intensity factor criterion (Kymax) (Nemat-Nasser and Horii, 1982),
(v) maximum energy release rate criterion (G max) (Wu, 1978),

(vi) local symmetry criterion (K = 0) (Goldstein and Salganik, 1974).

Furthermore, these criteria can be classified into (a) explicit prediction theory and (b) implicit prediction
theory. An explicit prediction theory predicts the propagation direction satisfying the postulated criterion
based on a physical quantity for the current crack tip. Then, the crack is advanced in this direction, with a
small crack-length increment according to the experimental crack propagation history. The criteria (i), (ii)
and (iii) fall into this category.

Contrary to this, an implicit prediction theory seeks the propagation direction that satisfies the postu-
lated criterion based on a physical quantity after the crack is advanced with a small crack-length incre-
ment. An iterative process is generally needed to find the propagation direction. The criteria (iv), (v) and
(vi) are classified into this category. It is known that in general the implicit prediction theories are more
accurate.

Nishioka et al. (1996, 1997) have succeeded to predict a smooth fast curving fracture path in a DCB
specimen, using the moving isoparametric element method based on the mapping technique. In the previous
studies (Nishioka et al., 1996, 1997), the criteria (iv)—(vi) were tested in the mixed-phase simulation with the
fracture-path prediction mode. It was found from these simulations that the predicted fracture path based
on the local symmetry criterion most accurately agreed with the actual experimental fracture path. Thus, in
this section, numerical procedures based on only the local symmetry criterion are explained. However, all
implicit criteria as well as all explicit criteria can be tested in a similar manner if they are well described in
terms of physical quantities.

Fig. 12 schematically explains the numerical procedures for the path-prediction mode of the mixed-phase
simulation. In each time step, the crack is advanced by a small increment according to the experimental
history (crack-length versus time curve).

The fracture path is predicted in an iterative manner as follows: In the following a superscript (i) denotes
the iteration number. At a generic time step n, as the first trial, the crack is advanced in the tangential
direction Of,i) (i = 1) at the crack tip of the step n — 1. If an employed propagation-direction criterion, for
example the local symmetry (Kyj; = 0) criterion, is satisfied at the attempted crack tip location, the crack is
advanced in this direction Hf?. If the Ky value is negative, the crack is tentatively advanced in the direction
of 0,(7”1) = Ofli) + A0, as the next trial. If the Kj; value is positive, Af is taken as negative. Then, the satis-
faction of the criterion at the trial crack tip location is checked. If the criterion is not satisfied and the value
of the Kj; value at the present trial is different with that at the previous trial, the next trial direction 9’(;':1)
that satisfies the employed propagation-direction criterion is predicted by the Ky versus 6 curve as shown in
Fig. 12. If the predicted angle 0. largely differs from the trial angle of the current iteration 02"), the next trial
direction is taken as 0/ = 0 4 A@. The crack is advanced in this direction and the satisfaction of the
criterion is checked. These procedures are repeated until the criterion is satisfied. At each iteration, re-
meshing is needed if the implicit criterion is used, as explained above. After finding the propagation di-
rection that exactly satisfies the postulated criterion, the time step proceeds to the next step.
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Fig. 12. Fracture path prediction procedure.

7. Evaluation method of dynamic fracture mechanics parameters

In this study, to evaluate various fracture mechanics parameters for a crack subject to impact stress wave
loading, and for a dynamically kinking as well as dynamically curving crack, the path independent dynamic
J integral derived by Nishioka and Atluri (1983) is used.

7.1. Path independent dynamic J integral

The static J integral (Rice, 1968) has played an important role in static fracture mechanics. From the
theoretical and computational points of view, the static J integral has the following salient features: (i) it
physically represents the energy release rate; (ii) it has the property of the path-independent integral, which
gives a unique value for an arbitrary integral path surrounding the crack tip; (iii) it can be related to the
stress intensity factors by arbitrarily shrinking the integral path to the crack tip.

In the case of dynamic fracture mechanics, Nishioka and Atluri (1983) have derived the dynamic J in-
tegral (J') which has the aforementioned three features. We consider a dynamically propagating crack in an
elastic solid as shown in Fig. 13. The global-axis components of the dynamic J integral can be expressed by

‘]Ii = llrrol [(W + K)I’lk — tiu,‘.k] ds (143)
=0 Jr.

=0 L Jrsr, VeV,

where u;, t;, f;, n, and p denote the displacement, traction, body force, outward direction cosine, and mass
density, respectively. W and K are the strain and kinetic energy densities, respectively, and (), = 0( )/0X;.
The integral paths are defined in Fig. 13. I';, I', and I'; denote a near-field path, far-field path and crack
surface path, respectively. V7 is the region surrounded by I', while V; is the region surrounded by I’,.

The crack-axis components of the dynamic J integral can be evaluated by the following coordinate
transformation:

T = oy (00)J], (15)
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Fig. 13. Coordinate systems and integral paths.

where oy is the coordinate transformation tensor. The tangential component of the dynamic J integral J;°
corresponds to the rate of change in the potential energy per unit crack extension, namely, the dynamic
energy release rate.

The dynamic J integral can be related to the instantaneous stress intensity factors for the elastody-
namically propagating crack with velocity C, as in (Nishioka and Atluri, 1983):

J = i {41(O)K} + An(C)Kyy + Am(C)Kyy (16)
JY = A‘Vu(C)KIKU, (17)
where p is the shear modulus, and A;(C)-Ay(C) are functions of crack velocity C and given by
A(C) = pi(1=F3)/D(C),  An(C) = B,(1 = B3)/D(C),  Am(C) =1/p, (18a,b,c)
2
BB (1 - ) {4ﬁ1ﬁ2+(1+ﬁ§) }(2+ﬂ1+ﬁ2)72 g 8
BT TETS 20+ p)(1+ ) Hp) e
and
D(C) =4y, — (1+ B3)” (19)

In the above equations, f; and f, are crack velocity parameters and defined by
Bi=(1-cc)'?,  py=(1-Cc)”, (20a, b)

where Cy4 and C; represent the longitudinal and shear wave velocities, respectively.
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For a stationary crack (C = 0) under impact loading as well as under static loading, the velocity
functions are expressed by

A1(0) = An(0) = 4v(0) = (k + 1)/4, Am(0) =1, (21a,b)

where k depends on only Poisson’s ratio v, and is defined as x = (3 —v)/(1 4+ v) for plane strain, and
Kk = 3 — 4v for plane stress.
The salient features of the dynamic J integral can be summarized as follows:

(1) It physically represents the dynamic energy release rate G (Nishioka and Atluri, 1983).

(i1) For the far-field path, it has the property of the path-independent integral (Nishioka and Atluri,
1983).

(ii1) For the near-field path, it is practically invariant with the shape of the infinitesimal near-field path
(Nishioka, 1994).

Therefore, in numerical analyses, only far-field integrals can be usually used to evaluate the values of the
dynamic J integral. In this case it is convenient to use the following expression:

J/: = / (W + K)ny — tiu 4] dS + / [(pit; — fi)uix — pitsin ] dV. (22)
r+Te Vr

7.2. Determination of mixed-mode stress intensity factors from the dynamic J integral components

At each iteration step and each time step in the moving finite element method explained in Section 4, the
global components of the dynamic J integral can be evaluated by using Eq. (22). The crack-axis compo-
nents of the dynamic J integral can be converted from the global components of the dynamic J integral,
using Eq. (15). Then substituting these values in Eqgs. (16) and (17), the in-plane mixed-mode stress intensity
factors K; and Kj; can be determined directly (Nishioka and Atluri, 1984).

Although this direct method itself is theoretically valid, some difficulty arises if the value of J’ obtained
by a numerical analysis is not very accurate. For a dynamically propagating crack, the integrand (W + K)
in the dynamic J integral possesses a singularity. Thus, if we use a moving singular element method in-
corporating the »~1/2 stress singularity (Nishioka and Atluri, 1980a,b), the J;’ integral is accurately eval-
uated. In this case, it is known that the direct method gives very accurate K; and Kj; values (see Nishioka
and Atluri, 1986).

On the other hand, when ordinary non-singular elements are used in the vicinity of a crack tip, the
evaluated values of J5” by non-singular elements may not be very accurate due to the lack of the singularity
in the integrand (W + K)n) along the crack surface path I'; (see Eq. (22)), where #) is the x) component of
the outward normal unit vector. When the integration point on the crack surface path I'. approaches the
crack tip (r — 0), the direction cosine n} behaves as (n))” — =+(—1). Thus, the singular integration theo-
retically known to exist along the crack surface path cannot be performed when non-singular elements are
used around the crack tip.

Contrary to this, in the integration of J°, either the singular element or non-singular elements can
provide accurate Kj and Kj; values, since as the integration point on the crack surface path I'. approaches
the crack tip (» — 0), the integrand of J?°, becomes zero due to (n{)* — 0. In other words, the evaluation of
J{" is not affected by the modeling of the crack tip, while the J;° is affected by the modeling of the crack tip.

In order to overcome the difficulty in the direct method, and to accurately evaluate the in-plane mixed-
mode stress intensity factors from the dynamic J integral values, the component separation method has
been proposed by Nishioka et al. (1990b). The formulae of the component separation method are expressed
by using the global components of the dynamic J integral as
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) 1/2
K — & 2upP,(J] cos Oy + J; sin 0y) (23a)
A(61 By + 61By) 7
/ ! o 172
K — 6, 2up(J] cos Oy + J; sin 0y) (23b)
An(5i B+ 5upy) 7

where 07 and Jy are the mode I and mode II crack opening displacements at a point near the crack tip. 0, is
the angle of crack direction measured from the global axis X;. If the crack-axis component J{° is obtained
by Eq. (15), the following formulae are also useful:

0 12
Ky =6 22'MJ—]'822 ) (24a)
Ai (678, + 63 51)
0 12
Ky = dn %“J—‘ﬂlz ) (24b)
AII(élﬂZ + 0y 1)

The component separation method has the following features: (i) mixed-mode stress intensity factors can
be evaluated by ordinary non-singular elements, and (ii) the signs of Kj and Kj; are automatically deter-
mined by the signs of J; and Jy;, respectively.

8. Simulation results

The initial mesh pattern for the impact fracture specimen with the loading eccentricity of e = 0.0 is
shown in Fig. 14(a). The Delaunay automatic mesh generation was applied for the central part of the
specimen. The left and right end parts where no crack propagation is expected to occur are modeled by
regular meshes. The total number of elements is initially 4325 with 2262 nodes.

(a) Initial mesh pattern

(b) Input data for exterior boundary

Fig. 14. Initial mesh pattern for the impact fracture specimen (e = 0.0).
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The nodal points for the exterior boundary of the Delaunay automatic triangulation region are shown in
Fig. 14(b). The crack surfaces are separated by a small distance 2¢, as explained in Section 4.1. On the crack
surfaces, pairs of two nodes are placed. In the crack tip region, the specified interior points are placed
regularly with 30 points in the circumferential direction, and with 17 points in the radial direction. The size
of the crack tip elements in the radial direction is 0.5 mm.

As explained in Section 5, the velocity of the impact rod was imposed as (%)= 5 m/s at the loading area
as the initial boundary condition. The width of the loading area is considered to be Imm on which three
nodes are placed. Since the mass of the impact rod is about 10 times larger than that of the specimen, and
since the acoustic impedance (v/pE) of the rod is about 60 times larger than that of the specimen, the impact
rod can be assumed to move rigidly with same velocity throughout the simulation. Also the body force in
the specimen due to the gravity is neglected in this study.

8.1. Fracture-path prediction mode simulation

The mixed-phase fracture-path prediction mode simulations were carried out for the specimens with
e = 0.0 and 0.1. The plane stress condition was used. The crack propagation direction criterion was set to
use the local symmetry (K = 0) criterion. The time increment of At =2 ps was used throughout the
simulations.

8.1.1. Overall responses at the loading and support points

Firstly, the numerical results for the variations of the displacements at the loading point and the support
points in the specimen of e = 0.0 are shown in Fig. 15. It is seen that at about 200 pus the left and right
support points are separated from the supports. The variations of nodal forces at the loading points and
support points are shown in Fig. 16. It can be concluded from Figs. 15 and 16 that the specimen was always
pushed by the impact rod during the analysis. The load becomes the maximum (6000 N) at about 225 us,
while fairly small forces appear at the support points. Therefore, the behavior of this three-point bend
specimen is very similar with that of a one-point bend specimen sometimes used in impact fracture tests.

The detailed responses of the support points are shown in Figs. 17 and 18. In Fig. 18, small reaction
forces at the support points appear when the longitudinal wave induced by the impact load arrives at the

0.2

ON 7

-0.2 L / /A Left support point —
N‘ X Right support point

2 T,

Z O Loding point

st

Displacement [mm]
=
=N

-1.2 L
14 Arrival time of longitudinal wave at supports : 130'.8 Us %
0 50 100 150 200 250 300

Time [psec.]

Fig. 15. Variations of displacements at the loading and support points (e = 0.0).
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Fig. 16. Variations of forces at the loading and support points (e = 0.0).
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Fig. 17. Displacements at the support points (e = 0.0).

supports (¢ = 130.8 ps). These reaction forces become zero again at 180 ps. Then it is seen in Fig. 17 that at
this instant the support points start moving up from the supports.

For the case of e = 0.1, although it is not shown here, the variation of the load is almost the same with
that of e = 0.0 shown in Fig. 16. However the maximum load was 6400 N at 210 ps. The detailed variations
of displacements and the nodal forces at the support points are shown in Figs. 19 and 20. The impact
longitudinal wave arrives earlier at the left support. At this instant (120.4 ps) small nodal reaction force
appears at the left support point, then it becomes zero at 166 ps. Then the left support point starts moving
up from the left support. Similar responses of the right support point occur with the delay of about 21 ps
(the difference of the arrival times at the left and right supports) from those of the left one. It is interesting
to see that the maximum reaction force at the left support point is about 45 N and that of the right one is
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Fig. 18. Forces at the support points (e = 0.0).
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Fig. 19. Displacements at the support points (e = 0.1).

about 25 N, and the average value 30 N corresponds with each support reaction force in the case of e = 0.0
(see Fig. 18).

8.1.2. Simulated fracture path and dynamic fracture parameters

Using the local symmetry (Kj = 0) criterion in the mixed-phase fracture-path prediction mode simu-
lation, the simulated fracture path and the overall deformation at various instants are obtained and shown
in Fig. 21 for e = 0.0. To clearly see the propagating crack, the deformation was magnified by 30 times. For
the case of e = 0.0, the dynamic fracture started at t = 156 ps, as indicated in Fig. 5. Thus, the crack was
stationary until this time. The crack propagated straight toward the loading point. As a consequence, the
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Fig. 20. Forces at the support points (e = 0.1).

simulated fracture path is almost perfectly straight, as can be expected by the mode I loading condition of
e = 0.0. Thus the dynamic fracture path prediction was done successfully.

The non-contact situations at the support points can clearly be seen in the deformed specimen after 230
us. As stated in the previous subsection, the separation of the support points from the supports started at
180 ps. However, in the deformed specimen at 210 ps, the separation at each support point is too small to be
seen.

The simulated fracture path and the overall deformation for the specimen of ¢ = 0.1 are shown in Fig.
22. In this case, the dynamic fracture started at = 120 ps. At the initiation of dynamic fracture, the crack
kinked toward the direction where the local symmetry criterion (Ky; = 0 criterion) is fulfilled. Then the
crack propagated toward the loading point.

The dynamic J integral was evaluated for five circular paths with the radii of 1.0, 2.0, 3.0, 4.0 and 5.0 mm
from the crack tip. The dynamic J integral values at various instants of time are plotted against the path
number, in Fig. 23 for e = 0.0, and in Fig. 24 for e = 0.1. In each case, excellent path independence can be
seen for not only the stationary crack under impact but also the dynamically propagating crack. The av-
erage values of the dynamic J integral were used to evaluate various fracture parameters.

The variations of the stress intensity factors converted from the average values of the dynamic J integral
using the component separation method expressed by Egs. (24a) and (24b) are shown in Fig. 25 for the
specimen of e = 0.0. In the figure, Cy and C; indicate the arrival times of the longitudinal and the shear
waves from the impact loading point to the crack tip, respectively. Also 7}, indicates the initiation time of
dynamic crack propagation. When the compressive longitudinal wave arrives at the crack tip, K; becomes
slightly negative. This means that the crack surfaces are compressed slightly. In this study, this weak
contact of the crack surfaces was ignored allowing a small overlapping. The K; becomes positive and in-
creases when the shear wave arrives at the crack tip. The Kj; values are completely zero throughout the
simulation. Once again this indicate that the postulated criterion (Kj; = 0) is successfully fulfilled during the
fracture-path prediction mode simulation.

The stress intensity factors were also evaluated by the sizes of the caustic patterns using a theory of
mixed-mode dynamic caustics developed by Nishioka and Kittaka (1990). These are also plotted in Fig. 25.
The experimentally obtained stress intensity factors agree excellently with the simulated ones. However,
after crack propagation, they somewhat differ from the simulated ones although both tendencies are
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Fig. 21. Simulation results for dynamic fracture path prediction with the Ky = 0 criterion (e

similar. The numerical simulation reveals the theoretically known instantaneous drop in the Kj value

(Nishioka and Atluri, 1980b) for the sudden increase in the crack velocity. Thus, the difference in the early
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Fig. 23. Dynamic J integral against path number (e = 0.0, the Kj; = 0 criterion).
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Fig. 24. Dynamic J integral against path number (e = 0.1, the Kj; = 0 criterion).

stage of dynamic crack propagation can be attributed to the slower response of caustic pattern for the
sudden change of the crack velocity.

The variations of the stress intensity factors in the specimen of e = 0.1 are shown in Fig. 26. In this case,
the compressive longitudinal wave obliquely impinges to the crack tip. For this reason, both Kj and K
appear when it arrives at the crack tip (see Cy in Fig. 26). After that, the Kj; increases up to the fracture
initiation. Similarly to the case of e = 0.0, the K starts increasing steadily when the shear wave arrives at
the crack tip. At the one set of dynamic fracture, the mode II stress intensity factor was dominant, thus
almost pure mode II fracture occurred in this specimen. This is also evident in the deformed shape of the
specimen at 120 ps (see Fig. 22). After the onset of dynamic fracture, the Ky values are completely zero,
since the local symmetry criterion (Kj = 0) is imposed. Once again, this indicates the success of the in-
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tended simulation. Furthermore, the simulated stress intensity factors are in excellent agreement with the
experimentally obtained ones.

In both specimens, during dynamic crack propagation, the stress intensity factors K increase (see Figs.
25 and 26) although the experimentally obtained crack velocities steadily decrease (see Figs. 5 and 6). This
implies that an increasing K; does not necessarily cause crack acceleration. In fact, Takahashi and Arakawa
(1987) and Arakawa et al. (1997) observed increasing K; values for decreasing crack velocities in their
experiments. The mechanism of the acceleration effect on dynamic propagation fracture toughness, which
was one of the most important unsolved problems in dynamic fracture mechanics, was recently elucidated
by Nishioka et al. (2000). From the generation-phase simulation of the experiment of Arakawa et al. (1997),
a linear relationship was found between the excess unsteady-term stress Aoy, (the higher-order stress field
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for an unsteadily propagating crack (Freund and Rosakis, 1992; Nishioka and Kondo, 1995)) at 1 mm
ahead of the crack tip and the rate of the dynamic propagating fracture toughness Kip. Also, it was found
that, in the earlier stage of crack deceleration process, Kp is positive and has a linear relation with the crack
velocity a. Therefore, in the earlier stage of crack deceleration, it is possible to observe the increasing stress
intensity factor even for decreasing crack velocity.

8.2. Comparisons of different types of simulations

The generation phase simulation was also carried out for the case of e = 0.1, using the experimental data
of the crack propagation history and the fracture path history. The fracture path should exactly agree with
the experimental fracture path, since the crack tip in this model was forced to move along the experimental
one (see Fig. 27).

Another mixed-phase path-prediction mode simulation was carried out for e = 0.1, using the maximum
hoop stress criterion as the propagation-direction criterion. The experimental and two simulated fracture
paths up to ¢t = 210 ps are compared in Fig. 27. The overall agreement of three fracture paths is excellent, as
seen in Fig. 27(a). The magnified view of the fracture paths is shown in Fig. 27(b). The initial kinked angle
obtained by the local symmetry criterion agrees excellently with the actual experimental one, while the
initial kinked angle obtained by the maximum hoop stress criterion is smaller than the experimental one.
The fracture path simulated by the maximum hoop stress criterion after X; > 10 mm coincides with the
actual fracture path. Contrary to this, the fracture path simulated by the local symmetry criterion starts to

(a) Comparison of the experimental and simulated fracture paths

X1
Nmm)

20

Maximum | 15
hoop stress

Local symmetry criterion
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‘,.l'-
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(b) Magnified view of the three fracture paths

Fig. 27. Comparison of fractured paths at 210 ps.
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deviate after about X; > 2.5 mm, and after X; > 10 mm the simulated fracture path becomes parallel to the
actual one. However, it should be noted that the deviation of the two paths is very small and only 1.3 mm.

The variations of the stress intensity factors obtained by the generation phase simulation are shown in
Fig. 28(a), while those obtained by the fracture-path prediction mode simulation with the maximum hoop
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Fig. 28. Comparison of dynamic stress intensity factors (e = 0.1).
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stress criterion are shown in Fig. 28(b). For the stationary crack (0<¢<7,), all variations of the mixed
mode stress intensity factors Kj and Kj; are the same (see Fig. 26, Fig. 28(a) and (b)). In all cases, it is
remarkable to see that the crack deformation mode drastically changes from the mode II dominance to the
mode I dominance, instantly after the onset of dynamic fracture. The K; and Ky variations obtained by
various types of simulations agree well each other. However, the Kj; values obtained by the maximum hoop
stress criterion exhibit somewhat oscillatory behavior.

9. Conclusions

In this paper, first, high-speed photographs of impact fracture phenomena were presented. From these
photographs, detailed histories of dynamic crack propagation and dynamic fracture path were evaluated.

Next, the moving finite element method based on Delaunay automatic mesh generation was developed.
Various numerical procedures for the mixed-phase simulation with path prediction mode were developed in
conjunction with the numerical procedures in the moving finite element method. Also numerical procedures
for the contact/non-contact conditions at the loading and support points were developed. The present
method made it possible to investigate its validity of any physically described criterion for crack propa-
gation direction.

Using the moving finite element method based on Delaunay automatic mesh generation, the mixed-
phase path prediction mode simulations with the local symmetry criterion were carried out for the impact
fracture experiments with the loading eccentricities of e = 0.0 and 0.1. From the numerical simulations,
detailed responses of the dynamically fracturing specimens were clarified.

The present method successfully predicted precise fracture paths in non-self-similar fast fracture phe-
nomena such as dynamically kinking and curving crack propagation. In addition, the local symmetry
criterion was found to be useful as the propagation-direction criterion.
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